Commute time guided transformation for feature extraction

نویسندگان

  • Yue Deng
  • Qionghai Dai
  • Ruiping Wang
  • Zengke Zhang
چکیده

1077-3142/$ see front matter Crown Copyright 2 doi:10.1016/j.cviu.2011.11.002 ⇑ Corresponding author. Address: Room 725, Cen University, Beijing 100084, China. Fax: +86 10 62788 E-mail address: [email protected] (Q. D This paper presents a random-walk-based feature extraction method called commute time guided transformation (CTG) in the graph embedding framework. The paper contributes to the corresponding field in two aspects. First, it introduces the usage of a robust probability metric, i.e., the commute time (CT), to extract visual features for face recognition via a manifold way. Second, the paper designs the CTG optimization to find linear orthogonal projections that would implicitly preserve the commute time of high dimensional data in a low dimensional subspace. Compared with previous CT embedding algorithms, the proposed CTG is a graph-independent method. Existing CT embedding methods are graph-dependent that could only embed the data on the training graph in the subspace. Differently, CTG paradigm can be used to project the out-of-sample data into the same embedding space as the training graph. Moreover, CTG projections are robust to the graph topology that it can always achieve good recognition performance in spite of different initial graph structures. Owing to these positive properties, when applied to face recognition, the proposed CTG method outperforms other state-of-the-art algorithms on benchmark datasets. Specifically, it is much efficient and effective to recognize faces with noise. Crown Copyright 2011 Published by Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commute time distance transformation applied to spectral imagery and its utilization in material clustering

Spectral image analysis problems often begin by applying a transformation that generates an alternative representation of the spectral data with the intention of exposing hidden features not discernable in the original space. We introduce and demonstrate a transformation based on a Markov-chain model of a random walk on a graph via application to spectral image clustering. The random walk is qu...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

Experimental and numerical study of delamination detection in a WGF/epoxy composite plate using ultrasonic guided waves and signal processing tools

Reliable damage detection is one of the most critical tasks in composite plate structures. Ultrasonic guided waves are acknowledged as an effective way of structural health mo...

متن کامل

Wavelet Transformation

Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation.   Introduction: The...

متن کامل

Predicting Normal People’s Reaction Time based on Hippocampal Local Efficiency During a Memory-Guided Attention Task

Background: There are some convincing shreds of evidence indicating that memory can direct attention. The local efficiency of an area in the brain, as a quantitative feature in a complex network, indicates how the surrounding nodes can transfer the information when a specific node is omitted. This feature is a scale for measuring efficient integration of information in the brain. Objectives:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2012